Global uniqueness and Lipschitz stability of residual stress from one boundary measurement

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniqueness and stability of determining the residual stress by one measurement

In this paper we prove a Hölder and Lipschitz stability estimates of determining the residual stress by a single pair of observations from a part of the lateral boundary or from the whole boundary. These estimates imply first uniqueness results for determination of residual stress from few boundary measurements.

متن کامل

Uniqueness and Lipschitz Stability of an Inverse Boundary Value Problem for Time-harmonic Elastic Waves

where Ω is an open and bounded domain with smooth boundary, ∇̂u denotes the strain tensor, ∇̂u := 12 (∇u + (∇u)T ), ψ ∈ H(∂Ω) is the boundary displacement or source, and C ∈ L(Ω) denotes the isotropic elasticity tensor with Lamé parameters λ, μ: C = λI3 ⊗ I3 + 2μIsym, a.e. in Ω, where I3 is 3 × 3 identity matrix and Isym is the fourth order tensor such that IsymA = Â, ρ ∈ L(Ω) is the density, and...

متن کامل

Uniqueness and weak stability for multi-dimensional transport equations with one-sided Lipschitz coefficient

The Cauchy problem for a multidimensional linear transport equation with discontinuous coefficient is investigated. Provided the coefficient satisfies a one-sided Lipschitz condition, existence, uniqueness and weak stability of solutions are obtained for either the conservative backward problem or the advective forward problem by duality. Specific uniqueness criteria are introduced for the back...

متن کامل

Uniqueness and Hölder Type Stability of Continuation for the Linear Thermoelasticity System with Residual Stress

By introducing some auxiliary functions, an elasticity system with thermal effects becomes a coupled hyperbolic-parabolic system. Using this reduced system, we obtain a Carleman estimate with two large parameters for the linear thermoelasticity system with residual stress which is the basic tool for showing stability estimates in the lateral Cauchy problem.

متن کامل

Global Uniqueness for the Calderón Problem with Lipschitz Conductivities

We prove uniqueness for the Calderón problem with Lipschitz conductivities in higher dimensions. Combined with the recent work of Haberman, who treated the threeand four-dimensional cases, this confirms a conjecture of Uhlmann. Our proof builds on the work of Sylvester and Uhlmann, Brown, and Haberman and Tataru who proved uniqueness for C1-conductivities and Lipschitz conductivities sufficient...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ESAIM: Proceedings

سال: 2009

ISSN: 1270-900X

DOI: 10.1051/proc/2009004